Line Sweep
Algorithms

Schalk-Willem Kriger — 2009 Training Camp 1

presentation.start();

Closest Pair Algorithm

2008 Training Camp 2: Good Neighbours

The problem:

= Bruce wants to visit his friends on weekends.

= The friends are scattered around (each at a unique
location).

= Find the two friends that live closest to each other
= Maximum of 1 000 000 friends

Brute force: O(N?) — too slow

Initialize h (shortest distance found so far) with the distance between the first two points.
h = Euclidian distance between point 1 and 2 = 6.23 units 3

Closest Pair Algorithm

I
I
- >
I
I
I
I

h = Euclidian distance between point 1 and 2 = 6.23 units
No distance less than 6.23 units.

Closest Pair Algorithm

h = Euclidian distance between point 1 and 2 = 6.23 units
There are two points that are closer than the current value of h! Change h to 5.45.

5

Closest Pair Algorithm

h = Euclidian distance between point 1 and 2 = 5.45 units
Change h to 4.30 units.

Closest Pair Algorithm

= C++ implementation (with STL)

ocooNOUVMbWNRE

24,
25.
26.
27.

28.
29.

. #include <stdio.h>

. #include <set>

. #include <algorithm>

. #include <cmath>

. using namespace std;

. #define px second

. #define py first

. typedef pair<long long, long long> pairll;

int n;

.pairll pnts [100000];

.set<pairll> boX; -<f————— :
double best; Use a balanced binary tree (Set)
.int compx(pairll a, pairll b) { return a.px<b.px; }

.int main () {

scanf("%d", &n);

for (int i=0;i<n;++i) scanf("%lld %lld", &pnts[i].px, &pnts[i].py);
sort(pnts, pnts+n, compx); <

best 1500000000 IL INF

boX . 1nsert(pnts[0]),

int left = 0; eu—

for (int i=1;i<n;++i) {
while (left<i && pnts[i].px-pnts[left].px > best) box.erase(pnts[left++]);
for (typeof(box.begin()) it=box.lower bound(make pair(pnts[i].py-best, pnts[i].px-best));

it! =box.end() && pnts[i].py+best>=it->py; it++)
best = min(best, sqrt(pow(pnts[i].py - it->py, 2.0)+pow(pnts[i].px - it->px, 2.0)));

box.insert(pnts[i]);

}

return 0;
}

Time complexity: O(N log N)

Closest Pair Algorithm

= C++ implementation (with STL) — zoomed 1n

19.
20.
21.
22.

23.

24,

25.
26.
27.

box.insert(pnts[0]);
int left = 0;
for (int i=1;i<n;++1) {
while (left<i && pnts[i].px-pnts[left].px > best)
box.erase(pnts[left++]);
for (typeof(box.begin()) it=
box.lower bound(make pair(pnts[i].py-best, pnts[i].px-best));
it!=box.end() && pnts[i].py+best>=it->py; it++)
best = min(best, sqrt(pow(pnts[i].py — it->py,2.0)+
pow(pnts[i].px - it->px, 2.0)));
box.insert(pnts[i]);

}
printf("%.2f\n", best);

Time complexity: O(N log N)

Line segment intersections (HV)

= Problem: given a set S of N closed segments in the
plane, report all intersection points among the
segment 1in S

= First consider the problem with only horizontal and
vertical line segments

= Brute force: O(N?) time
— too slow

Use events: start of horizontal line, end of horizontal

line and vertical line.

Set contains all horizontal lines cut by the sweep line
(sorted by Y). Indicated as red lines on diagram.

Horizontal line event: add/remove line from set.

Vertical line event: get all horizontal -
range from set). Indicated as red
dots on diagram.

Use balanced binary tree (C++ set)
— guarantee O(log N) for operations.

1nes 1t cuts (get

-

10

oNOoOOUTE, WN R

Line segment intersections (HV)

. // <Headers, structs, declarations, etc.>

. // type=0: Starting point of horizontal line
. // type=1: Ending point of horizontal line

. int main () {

// <Input>
sort(events, events+e); // Sort events by X-coordinate
for (int i=0;i<e;++1) {
event ¢ = events[i]; // c: current event
if (c.type==0) s.insert(c.pl); // Add starting point to set
else if (c.type==1) s.erase(c.p2); // Remove ending point from set
else {

for (typeof(s.begin()) it=s.lower bound(point(-1, c.pl.y));
it!=s.end() && it->y<=c.p2.y; it++) // Range search
printf("sd, %d\n", events[i].pl.x, it->y);

}
}
return 0;

.}

11

Line segment intersections

More general case: lines don't have to be horizontal
or vertical.

Lines change places when they intersect.
Use priority queue to handle events.
Events also sorted by X.

Events 1n priority queue:

= end-points of line-segments

- intersection points of adjacent elements. \ !

Set contains segments that are currently
intersecting with the sweep line.

12

Line segment intersections

= At a starting point of a line segment:

= Insert segment into set.

= Neigbours are no longer adjacent. Delete their intersection point (if any)
from the priority queue if it exists.

= Compute intersection of this point and its neigbours (if any) and insert
into priority queue.
= At an ending point of a line segment:
= Delete segment from set.
= Neigbours are now adjacent. Compute their intersection point (if any)
and insert into priority queue.

= At an intersection point of two line segments:

= Qutput point.
= Swap position of intersection segments in set.

= The swapped segments have new neigbours now. Insert / delete |
intersecting points from priority queue (if needed).

13

Area of union of rectangles

= (Calculate area of the union of a set of rectangles.

= Again work with events (sorted by x) and a set
(sorted by y).

= Events:

= Left edge
= Right edge

= Set contains all the rectangles
the sweep line 1s crossing.

14

Area of union of rectangles

= Know x-distance (Ax) between two adjacent events.

= Multiply 1t by the cut length of the sweep line (Ay) to
get the total area of rectangles between the two events.

= Do this by running the same algorithm rotated 90
degrees. (Horizontal sweep line running from top to
bottom)

= Use only rectangles in the active set

= Event: Horizontal edges.

= Use a counter that indicates how many E
rectangles are overlapping at the current point.

= Cut lengths are between two events where the count 1s zero. 15

Area of union of rectangles

Example of inner loop

/:/ Horizontal sweep line

3 Vertical sweep line

- >
Ax between two adjacent vertical events

Count: 1

Area of union of rectangles

Example of inner loop

Count: 2

17

Area of union of rectangles

Example of inner loop

Count: 3

18

Area of union of rectangles

Example of inner loop

Count: 2

19

Area of union of rectangles

Example of inner loop

Count: 1

20

Area of union of rectangles

Example of inner loop

Count: 0

21

Area of union of rectangles

Example of inner loop

Count: 1

22

Area of union of rectangles

Example of inner loop

Count: 0

23

Area of union of rectangles

Source code (C++) can be seen on the handout.

24

Area of union of rectangles

= Run time: O(N°) with boolean array in the place of a
balanced binary tree (pre-sort the set of horizontal
edges).

= Can be reduced to O(N log N) with a binary tree
manipulation.

25

Given: A number of rectangles. (0<=N<5000)

Calculate the perimeter (length of the boundary of
the union of all rectangles)

Use basically the same algorithm

Horizontal boundaries: where count 1S zero 1n inner
loop.

26

Convex hull with sweep line

Graham scan: Sort by angle — 1s expensive and can get
numeric errors. (Can use C++ complex library)

Simpler algorithm: Andrew's Algorithm
Sort by X and use a sweep line!

Upper hull: Start at point with minimum X coordinate
and move right. When the last three points aren't
convex, delete the second-last point. Repeat until the
last three points form a convex triangle.

Sweep line algorithm runs in O(N)

O(N log N) — (points are sorted)

presentation.end();

28

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

